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Abstract. The work is proposing a theoretical method of drag forces 

establish for a lifting wing. The method considers the analysis of real fluid flow 

in the back of the wing. The study is made to sufficiently big distances that the 

movement could be considered with potential character. It is followed the jet’s 

influence on the back flow. It is observed the circulation when is taken in 

consideration the fluid emission from the trailing edge. It is theoretically 

estimated the speed potential and the scalar components in case of a bivariated 

movement. It is established a theoretical relation for the drag coefficient when 

the fluid emission from the trailing edge is controlled. 
 

Keywords: wing; fluid emission; circulation; potential movement; drag force. 

 
 

1. General Considerations 

 

In specialty literature, it is shown that a considerable part of the drag 

force is determined by the resistance bounded by the energy dissipated in the 

layer formed in the back of aerodynamic profile, named turbulent backwater. 
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So, the drag force xF , written in total differential form of impulse in 

ratio with x component in which direction is made the movement, for two 

sections determined by the coordinates 1xx   and 2xx  , situated in the back 

of the profile, but enough away by the body, and in the front of the profile too, 

it is determined with the relation for total resistance (Oroveanu 1976; Reigels 

1958). 
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in which: p ‒ fluid current pressure;  ‒ density of fluid being in movement 

around the body; u ‒ fluid current speed in the infinite section; u ‒ speed 

component in Ox direction, direction that coincides with general movement 

direction. This speed is considerate in the next vicinity of profile surface, into 

the limit layer. 

 Because the aerodynamic trace is thin, it could be negligee the integral 

from the plane 1xx  , the integral on the section surface. In this case, applying 

the Bernoulli’ rule, it can be determined the resistance force with relation: 
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The difference of the integrals for the value of 
2

 up   is constant, 

and becomes null. The difference of integrals uu    is eliminated because 

the fluid flux   dzdyu , which crosses the two sections taken in 

consideration and the back of the profile, must be equal, in conformity with the 

continuity equation, after this direction. 

By moving the plane 2xx   to a distance enough big by the body in the 

front of those, it is observed that the vectorial speed v from the internal limit 

layer of thickness   is relatively small, which permitted the inconsideration of 

term  222 wvu   like being a small value of second order. The values u, v 

and w are scalar components of speed v, from limit layer. 

If it is taken in consideration the hypothesis that u is smaller than 

components v and w (in front vicinity of braking out point) and out of 

backwater, then the relation that permitted the determination of drag force 

becomes: 
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The resistance so calculated for an aerodynamic wing could be written in 

function of speed’s circulation  . This circulation determines the profile’s lift 

capacity. Remarkable is the fact that, at big distances from the profile, the speed 

depends only by the coordinates y and z, so that their scalar components are: 

 

),( zyvv     and   ),( zyww   .                               (4) 

 

So, in this zone the fluid movement can be assimilated with a plane 

movement, which permits introduction of current function ),( zy  , which 

can establish analytical relations for the resolving of those two components of 

established speeds in the relation (4): 
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Considering the relation (3), for the drag force it could be established 

the next analytical formula: 
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Relation, which, for being true, must be, created the hypothesis that, to 

the chosen referee system, the y coordinate goes to   (Pop, 1983). 

Because the fluid’s general flowing in the external backwater has 

potential character, it exist so the function ),( zy  , named potential speed 

function, which satisfied the Laplace equation: 
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For the application of the relation (6) of the bivariated Green’s formula, 

it is obtained for the drag force the next expression: 
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The integral being effectuated in the length of body’s contour and 

n / being the gradient in the length of external normal to contour. 

 In the point from infinite 0),( zy  and, in consequence, the 

integration must be effectuated on a transversal contour of the backwater. 

 In consequence of this hypothesis, it is obtained for the drag force the 

next relation: 
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 In this case, the integration is made on elementary length dz of the 

backwater and the difference between the current function variations in the two 

sections considered represent the loop, which the derivate yzy  /),(  suffers 

on traversing the backwater. 

If it is considered the fact that zzywyzy  /),(/),(   then it 

is obtained: 
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that could permit the obtaining of the relation for the drag force 
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 In conformity with the potential movement theory, it is established for 

the current function ),( zy the expression: 
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The integration being effectuated on a plane contour; r is the distance to 

a point from this plane where it is looked to determine the current function’s 

value ),( zy . The measure between the parentheses represents the loop of 

current function’s derivate ),( zy  in the length of normal on the plan contour, 

where is made the integration. 

In case of relation (12), the integration may be realized only in the 

length of a segment of axe Oz so that in this situation the value of current 

function becomes the monovariable )(z  and has the next expression: 
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Introducing the relation (13) in drag force’s expression (11), this becomes: 
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Prandtl gives the circulation’s distribution law by developing a series of 

a trigonometric function: 
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2. Conclusions 

 

Once determined the friction force with the relation (14) it could be 

established the expression of friction coefficient xC , coefficient that determines 

the advancing resistance for the aerodynamic profile: 
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Or considering the expression (14), the relation of friction coefficient becomes: 
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It could be observed that in aerodynamic profile theory, the most 

important effect of limit layer’s back out on the up side of the profile is 

consisting in the increase of advancing resistance. 

The limit layer’s back out is made, in generally, in a point situated in 

the next of leading edge. It is imposed the translation of this point in the next 

of trailing edge, or this thing is realized only using control methods for the 

limit layer. 

One of those methods consists in launching an air jet, with big speed, 

between a slots placed in trailing edge. 

In this case, besides the maintaining a positive speed gradient in length 

of upside of the profile, the apparition of a horizontal component of a reactive 
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force into the jet, component which is collinear with the advancing resistance 

but with inverse sense, determines the considerable decreasing of advancing 

resistance force and implicit of coefficient xC . 
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CONSIDERAȚII TEORETICE ASUPRA FORȚEI DE  

REZISTENȚĂ LA ÎNAINTARE ÎN CAZUL ARIPII PORTANTE CU 

EMISIE DE FLUID PRIN BORDUL DE FUGĂ 

 

(Rezumat) 

 

Lucrarea propune o metodă teoretică pentru determinarea forței de rezistență la 

înaintare pentru o aripă portantă. Metoda consideră analiza mișcării fluidului real în 

spatele aripii la o distantă suficient de mare astfel încât mișcarea să aibă un caracter 

potențial. Este estimată circulația în cazul aripii cu emisie de fluid prin bordul de fugă.  

Este estimat teoretic potențialul vitezei și componentele scalare pentru 

mișcarea bidimensională. Este stabilită o relație teoretică de calcul pentru coeficientul 

de rezistență la înaintare pentru aripa cu  jet controlat în bordul de fugă. 


